
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Content-Aware Image Resizing Using a Greedy Seam

Carving Algorithm

Zayd Muhammad Kawakibi Zuhri - 13520144

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 13520144@std.stei.itb.ac.id

Abstract—The need of flexible digital images is ever-growing

in these times of advancement. In 2007, Avidan and Shamir

proposed a simple, yet effective method of image retargeting

named “Seam Carving”, making use of a dynamic programming

algorithm. This paper aims to implement a more

straightforward, simple, and lightweight alternative to Seam

Carving by using a greedy algorithm for seam generation. The

resulting images are resized in a content-aware fashion,

preserving essential features of an image.

Keywords—image resizing; content-aware image retargeting;

seam carving; greedy algorithm

I. INTRODUCTION

With the advancement of technology comes along the ever-
growing need of even better digital media. The wide variety of
devices and displays demands more flexible media to adjust
accordingly in various situations. Not to mention the wide-
spread use of videos and photos in everyday lives of the
average person requires accessible ways of manipulating media
to one’s needs. Web-based content is becoming more diverse
and dynamic, with various platforms adapting different layouts
to deliver the optimal user experience. Yet even though images
are the most used media in recent times, they remain static and
are limited to the ways they can be scaled and sized.

(a)

 (b) (c)

Figure 1: Classic Image Resizing, (a) Original Image, (b)
Image Scaling, (c) Image Cropping

In cases where the size or aspect ratio of an image must be
changed, classical image resizing techniques lack finesse.
Normal image rescaling only stretches and deforms images to a
desired size and does not take into consideration the quality of
the image thereafter, resulting in weird proportions of objects
and various distortions of features. Image cropping gets rid of
pixels in images completely, which might work fine on images
with a single object or feature, but more intricate images might
contain multiple important features that are harder to consider
when cropping, especially if those features reside on the edges
of an image, resulting in a loss of information. To achieve
better image resizing in terms of preservation qualities, a
technique is needed that takes the contents of the image into
consideration.

Enter image retargeting, which aims to achieve image
resizing whilst keeping the important features intact. Several
approaches have been explored, such as top-down methods by
Viola and Jones (2001) using face detectors to ascertain the
inclusion of people as important features of the image, then
using scaling and cropping to resize without losing those
features. Other methods may be bottom-up, such as the one
developed by Itti et al. (1999) that makes use of the
construction of a visual saliency map of the image in question
to detect important features. Although these methods can
achieve significant results in some cases, they still utilize
classical image resizing techniques and therefor are also
limited by them. Other methods such as the one by Setlur et al.
in 2005, utilize an automatic algorithm to decompose an image
to a background layer and foreground objects, segmenting
them, resizing the background, filling in the gaps, then
reinserting the important objects back into the resized image.
This also achieves impressive results, but also needs plenty of
overhead processing time.

In 2007, Avidan and Shamir proposed a much simpler
method of image resizing, giving it the term “seam-carving”.
The operation enables the changing of the size of an image by
carving out lines of pixels in the image, so-called “seams”.
These seams are connected paths of pixels that have the least
energy in the image, with energy defined by an energy
function, that can be chosen at will. Possible energy functions
are gradient magnitudes, image entropy, visual saliency, eye-
gaze data, and the like. Connected pixels are chosen from top
to bottom or left to right depending on whether one needs to
resize horizontally or vertically. The algorithm for choosing

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

this low-energy seam can be any shortest-path type algorithm
such as Djikstra’s algorithm, greedy algorithm, graph cuts, or,
as chosen by Avidan and Shamir, a dynamic programming
algorithm. These seams are then successively removed or
inserted to reduce or increase the size of an image. By
following an energy function while generating seams, carving
them out effectively results in content-aware resizing of the
image.

This paper will attempt to implement an alternative version
to the original seam-carving algorithm. Where the original uses
a dynamic programming approach in seam generation, I will
implement a more straight-forward, lightweight, and intuitive
approach by using a simple greedy algorithm. This approach is
expected to be much more memory-friendly since it does not
require the storing of tables and potential seams that are crucial
in the dynamic programming algorithm. This may result in a
trade-off with the quality of the chosen seam, but the memory
and time saved in comparison should be favorable. Do note
that this implementation will be limited to reducing image sizes
and will not support the image enlargement by seam insertion
possible in the original. The energy function chosen in this
implementation is the Sobel operator, which acts as an
approximation of the gradient of the image intensity function.
The hope is to obtain results as effective as the original in
terms of image size reduction quality, delivered in a more
compact and intuitive package.

II. THEORETICAL BASIS

A. Digital Images and the Sobel Operator

A digital image is made up of picture elements, so-called
pixels, that each contain discrete digital values. Raster images
contain a fixed number of rows and columns of these pixels,
that are the smallest elements of an image, containing finite
values that represent the brightness of a given color. Typically,
pixels are arranged in an ordered rectangular array, thus, the
size of an image is determined by the dimensions of this array,
with the width being the number of columns and the height
being the number of rows of pixels. When unpacked, each
array element contains an array of integer values, e.g., 3 values
in an RGB image represent the intensity of the colors Red,
Green, and Blue. Some file formats such as PNG also support
an alpha value, which translates to the transparency of the
particular pixel. Single value pixels can be interpreted as black
and white images in grayscale.

The Sobel operator, also known as the Sobel–Feldman
operator or the Sobel filter, is used in image processing and
computer vision to emphasize edges in images. Most useful in
edge detection algorithms, it is named after and first presented
by Irwin Sobel and Gary Feldman in 1968. The filter
effectively approximates the gradient of the image intensity
function, resulting in the norm of the gradient vector at each
point of the image. This operator involves convolving the
image in the horizontal and vertical directions using a tiny,
separable, integer-valued filter, and so is computationally
inexpensive, but provides a rough estimation especially for
high frequency fluctuations and features in the image.

Figure 2: Left: Original image, Right: Applied Sobel filter
to grayscale version of the original

B. Greedy Algorithms

A greedy algorithm is any algorithm that solves problems
step-by-step by choosing the best choice at every step of the
way without taking into consideration the consequences of that
choice. Thus, it does not care for the future and stands by the
“take what you can get now!” principle. Every step of the way
the algorithm can only hope to achieve the global optimum by
always choosing the local optimum. Greedy algorithms do not
guarantee an optimal solution but can approximate a globally
optimal solution in a fraction of the time of more complex
algorithms.

In terms of seam-carving, the elements of a greedy
algorithm can be broken down as follows:

• The candidate set: Contains the candidates to be chosen
at every step, i.e. all pixels in the image.

• The solution set: Contains chosen candidates that
constitute the solution, i.e. pixels at the seam line.

• The selection function: Decides the local optimum at
every step, i.e. pick the minimum energy pixel

• The feasibility function: Decides whether a candidate
can be selected or not, i.e. test for neighbor pixels

• The objective function: Decides optimality for
selection, i.e. minimum of energy function

A greedy algorithm's decision may be influenced by
previous decisions, but not by future decisions or all possible
solutions to the subproblem. In other words, a greedy algorithm
never reconsiders its choices. This is the primary distinction
between it and dynamic programming, which is exhaustive and
thus guarantees the globally optimal solution. At every step of
the way, dynamic programming makes choices with all the
previous choices in consideration and may result in a
reconsideration of the optimal path given by the algorithm.
This is where the overhead of memory and time comes into
play, because of this all the possibly optimal paths are stored to
reconsider in the future. This is not the case with a greedy
algorithm, where it does not need any more memory than that
needed to store the solution, nor extra time to reevaluate. This
trade-off is not a problem in the case of seam carving.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

III. IMPLEMENTATION

A. Image Preparation

Before resizing, an image will have go through a couple of
steps as preparation. We will keep track of two versions of an
image: its full image, and an energy matrix. The energy matrix
is the result of the Sobel filter and is essentially a two-
dimensional array the size of the image, containing energy
values given by the Sobel operator. This will be the matrix that
is used by the greedy algorithm. To create this energy matrix,
the image must first be converted to a grayscale image. Then,
to amplify the effect of the Sobel filter and compensate for
images with sub-optimal lighting, exposure, and the like, we
will rescale the intensity of the image. Also, to correct the
exposure, we equalize the image histogram. Only then will the
Sobel filter be applied on the grayscale image, thus resulting in
the energy matrix.

Figure 3: Left to right: Original image, grayscale image,
and energy matrix

B. Seam Generation

With the energy matrix in hand, we can start generating
seams to later remove. In this implementation of seam carving,
seams are only generated one-by-one and not multiple at once,
unlike the original implementation. A seam will be generated
and removed, and only after the removal will another seam be
generated and removed, so on until the desired size is reached.
This enables much faster and efficient seam generation.

Seams will be created using a greedy algorithm. We will
need a starting pixel in order to start carving out a seam, since
we will only be generating one seam at a time. The starting
pixel will be on the first row or column, in other words at the
top or on the left side of the image, depending on whether we
are currently resizing in the horizontal or vertical direction. The
first intuitive option is to randomly pick a starting pixel and
generate a greedy seam from there, but this will result in seams
that most likely interfere with important features of the image.
Thus, a heuristic approach is taken here to determine the
starting pixel, by first calculating the sum of all energies in all
columns when choosing from the first row, or from all rows
when choosing from the first column. This will give an
approximation on how important that particular row or column
is in terms of the containing features of an image. By choosing
the minimum from this approximation, we essentially choose
the starting pixel and pixels below, or to the side of it, with
potentially the lowest energy seam in the entire image. In other
words, this is our heuristically greedy shortcut or alternative to
exhaustively comparing multiple seams. Determining this
starting pixel is essential to generating an optimal seam that,
hopefully, does not interfere with important features of the
image.

After choosing a starting pixel, we can begin generating a
seam originating from it. We define connected pixels as three
neighboring pixels in the next row or column. When
constructing a seam horizontally, that would be the pixels on
the next column, one in the row above, one in the same row,
and one in the row below. When constructing a seam vertically,
the connected pixels would be the pixels in the row below, one
in the column to the left, one in the same column, and one in
the column to the right. In other words, we shall view the
energy matrix as a matrix of 8-connected pixels, but only
consider the connected pixels in the direction of the seam being
constructed.

4 3 2 1 5

8 4 2 3 6

4 7 2 6 3

1 2 9 1 3

5 5 1 9 4

8 3 6 7 1

Figure 4: Visualization of seam generation, with the
numbers in the cells being the pixel energies

We iterate from the starting pixel the same amount of times
as the height of the image when generating vertically, or the
width of the image when generating horizontally. As specified
in the greedy algorithm, the pixels will be chosen from the next
neighboring pixels by their energies, choosing the pixel with
the minimum energy at every iteration, until the seam reaches
the other end of the image. This selection of pixels is stored in
an array of indices, where every element with index i,
containing an index j, represents a pixel at the seam at the row i
and column j when generating vertically, or row j and column i
when generating horizontally. This process effectively creates a
line the width of 1 pixel along the axis of resizing, containing
pixels of little importance to the overall image. When
compared to the process of image cropping, it essentially does
the same thing. Cropping gets rid of a straight line of either
vertical or horizontal pixels, most probably at the edges. Seams
are, in other words, lines of dynamically cropped pixels, since
the amount of pixels removed at every row or column is the
exact same. By dynamically doing this with respect to the
energies of the pixels, these seams should avoid important
features and preserve objects as seen by the Sobel filter.

Figure 5: Original image on the left, Generated vertical seam
illustrated in red on the right.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

C. Seam Removal

After generating a full seam from edge to edge, we can
finally remove that seam to reduce the width or height of the
image by one pixel. An important thing to remember is that we
have to remove the seam both in the image and in the energy
matrix, so that we don’t have to recalculate the energy matrix
after every seam removal, so all removal operations will be
done both on the image and the energy matrix to pass on to the
next iteration. First we initialize new two-dimensional arrays
that are one pixel shorter in the direction we are resizing. These
will be filled in row-by-row with the original rows, but with the
single seam pixel deleted. To simplify the deletion pixels in
columns when resizing the height of an image, the rows and
columns will be swapped in the case of horizontal seams, since
deleting column-wise is mostly unsupported. Vertical seams
are already in the ideal form, so we can begin deleting and
inserting pixels. We iterate through the height/width of the
image, deleting the pixel at the index specified in the seam
array, then inserting that row into the new matrix. After every
row has been copied without the seam, we can swap back the
rows and columns for horizontal seams, and return the resized
image and energy matrix.

From testing both seam generation and seam removal, there
seems to be a great discrepancy between the two of them in
terms of computation time. This difference can reach a whole
order of magnitude slower. The time needed to remove a single
seam can be 10 times slower than the time needed to generate
that very seam. It seems like the problem lie not with the
greedy algorithm, but a major bottleneck of the seam removal
algorithm in this paper’s implementation. Alternative solutions
to this problem will be discussed further in the conclusion
section.

D. Resizing Down to A Specified Size

Now that we know how to generate a seam and remove it
from an image, we can dynamically resize images down to any
size or, in other words, resolution. This can be done in a
number of ways, depending on the current application and
implementation of the seam-carving algorithm. In the case of a
more manual approach, the user will input an image, and the
desired size containing the width and height of the output.
Given these variables, we can start the process of seam-carving
by first generating an energy matrix from the image. This only
has to be done once. After that, we can loop through seam-
generation and seam-removal in the horizontal direction x
amount of times, with x being the difference between the
original height of the image and the desired height. We can do
the same for the vertical direction, reducing the original width
of the image to the desired width. After these two loops are
done, the resulting image will be in the desired width and
height.

In the case of web applications, images should be able to
change dynamically according to the view the browser
currently finds itself in. Since the algorithm itself is lightweight
in nature, it should be able to be implemented on the client and
displayed through HTML/CSS. I have not implemented this
application, and it is of further interest to expand it.

IV. EXPERIMENTATION

In this section we will explore the capabilities of the seam-
carving algorithm, but also its limitations. Since it is a
relatively simple algorithm, the results given by it will vary
drastically on a case-by-case basis. The resulting sizes are
chosen to demonstrate the algorithm at various edge cases, and
are not random. To start off, we will first be looking at an
extremely simple image of shapes on a white background. The
image is very small at only 56 x 100 pixels, and will be a great
look into how the algorithm works at the smallest scale.

Figure 6: Simple shapes, Top: 56x100, Bottom: 45x75

As seen in Figure 6, a reduction of almost 20% of the
original height and 25% of the original height gives us an
interesting result. First of all, the blank spaces at every edge of
the image are, expectedly, gone, since they are trivial in the
context of size reduction and should be removed first and
foremost. But those reductions are not enough, and that is
where the algorithm steps in to create seams in-between the
objects, or in this case, shapes. Intuitively, we would want to
shrink the image so that the objects are closer together and will
not be deformed. The algorithm achieves this relatively well.
Looking at the distance between the red shape and the orang
shape, we can see clearly that they are almost touching one
another in the final image, a result of trying to squeeze them
together in a limited space as much as possible. However, we
can also see the orange shape deforming at the top. This is
because of the limitations of the seam itself, which cannot go
sideways at an angle more than 45 degrees. This is why as it
carves a seam between the orange and red shapes, it ‘shaves
off’ the top of the orange shape. other than that, we can also see
a deformation of the blue shape on the right. It seems like the
algorithm could not shove it further to the right, so it had no
choice but to shave off the side of the blue oval. This seems to
be cause by the same limitation as the deformation happening
at the top of the orange shape. The blue oval cannot be further
moved to the left since the angle of its sides relative to the
orange shape and grey rectangle is too steep to be carved by a
seam.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Figure 7: Man and Tower, Top: 968x1428, Bottom: 800x800

The image in Figure 7 is truly the ideal use case of this
algorithm. A clear background and foreground, with easily
defined objects, a man and a building. These two features are
separated in a way that would be hard to resize using traditional
image resizing techniques like cropping, since they would be
cut off. But using the seam carving algorithm, it manages to
preserve these features extraordinarily well. The main places
where the algorithm chose to cut off were the trivial edges, and
intuitively the space between the man and the tower. Oddly
enough. the algorithm carved seams that are sparse enough to
the point where the grassy ground and the sky with the clouds
does not look distorted at all. But, the algorithm may have
shortened the top of the tower just a little bit, where it could
have just cropped the bottom of the image. This is likely
because of the Sobel filter registering the grass as a more
energy-heavy feature than the top of the tower.

Figure 8: Last Supper, Top: 1280x2560, Bottom: 1280x2000

Figure 8 features the famous image of the Last Supper,
going through a 28% reduction in width. This showcases the
capability of the algorithm to compress a lot of features into the
desired size. Jesus and the Twelve Apostles represent a
challenge for the algorithm since there is barely any room to
crop off width-wise. Yet the algorithm manages to squeeze
them in in a way that is not too disruptive. A traditional scaling
of the image would certainly result in a far more distorted final
image. When looking at the rectangular wall ornaments at the
background, it becomes clear where the algorithm chose to
carve. The spaces between them are far closer compared to the
original image, but the rectangles themselves have not been
distorted by an observable amount. Of course, there is no
ignoring the skewed result that is that the left side of the table
is more compressed than the right side. This is most likely the
result of a bias in the energy matrix from the Sobel filter, where
the edges detected on the left are more vertical than on the
right, hence resulting in a lower resistance to creating seams on
the left. Notice that the faces of most of the apostles are mostly
kept in tact, only distorted to a certain degree. This is most
successfully done on the right side of the table, where it was
not objected to the energy bias. Most notable are the apostle
wearing an orange cape and the apostle with a red hood to the
very right of the image. Their faces and body proportions are
kept relatively in check. Also notable are the plates, food, and
cutlery on the table. The spaces between them have obviously
been carved off, and the resulting objects on the table are
relatively safe and still look like the original. Of course, when
looking at the image as a whole, it is easy to overlook the work
of the algorithm and pass it off as traditional image scaling, the
eyes are attracted to the distorted apostles on the left of the
image. Nonetheless, this is quite the amusing result considering
the challenge of compacting such an already compact image,
with many objects spanning its entire width.

Figure 9: Bosch’s Hell, Top: 555x736, Bottom: 400x450

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Another famous painting in Figure 9 is the representation of
hell by Hieronymus Bosch. An extremely busy image, and
certainly an edge case for the seam-carving algorithm. Yet with
all the business in it, it should still be recognizable in terms of
the objects and features inside it Starting from the left side is
where the algorithm chose to cut off the most content. The
skull has been squeezed into the rear end of the main object in
the image, the “witch tree”. Also notable is the ear and knife at
the top of the image, where the knife has been carved off
almost completely to make space for the pink bagpipe atop the
witch’s head. Even so, the ear and the gate to the left of it have
been preserved well enough. Aside from the quirkiness of the
left side, the middle and right side of the image have been
mostly untouched. The witch has been slightly distorted, in
favor of the odd structure on the right side. This is most likely
another product of bias on the energy matrix.

Figure 10: Family, Top: 318x452, Bottom: 300x300

This example in Figure 10 represents a more real-word case
of image resizing. This family of four is spread out evenly
length-wise across the image. How does the algorithm handle
this if a more compact image is desired? A human eye would
see the spaces between the family members as the most
obvious place to save space, assuming the hands can be
reduced in an unobtrusive way. As one can see, the algorithm
seems to do the exact same thing. Most notably, the space
between the father and the daughter has been reduced by a
considerable amount. Even so, the resulting image looks
relatively natural. Space between the other family members
have been carved out too, as can be seen by the slightly
distorted hands. This is quite impressive, and show the power
of this lightweight algorithm. Of course, we cannot ignore the
obvious distortions present in the resulting image. The legs of
the mother have been considerably distorted, likely a result of a
seam coming from the gaps above the legs. The algorithm also
chose to distort the top of the image, the head of the father,
rather than crop the bottom of the image.

Figure 11: Sitting Girl, Top: 546x1200, Bottom: 546x800

The case presented in Figure 11 is an example of where this
algorithm should not be applied to and fails to outperform
traditional image resizing. The image of a girl is obviously a
very easy image to crop down to a smaller size. Since there is
only a singular object of interest in the middle of the image, the
average person would just crop the left and right of the image
containing relatively unimportant features, such as trees on the
left and empty space on the right. This operation would leave
the girl in the middle untouched and perfectly fine. Yet the
algorithm sees the features on the left and right with the same
energy and importance as the main subject of the images and
chooses to apply a relatively even carving of multiple features
in the image. Interestingly enough, the algorithm also chose to
leave the right side of the image intact. The energy matrix
seems to have weighted that side of the image heavily,
compared to the middle and right side. The most obvious
problem in this case is the distortion of the main subject of the
image, the girl sitting in the middle. One wouldn’t mind the
distortion on the trees, but seeing that if this image were to be
further shortened and the algorithm distorts the girl even more,
that would be a failure. The girl’s legs are severely distorted
and the body unnecessarily compacted by the seam carving.

These examples go to show the wide range of results the
algorithm can manage to achieve. Although most of these are
heavily cropped at their widths, the same also apply to taller
images that are compacted into shorter resized images. Most of
the undesirable artifacts created through seam-carving, such as
distortion and uneven resizing, seem to come from the same
place. There is a certain bias and amount of error in the energy
function, that is very limited by the way the Sobel filter
functions. If we look further into the algorithm, the process of
choosing the starting pixel is also very biased towards the left
or top side, since the first instance of potentially multiple
minimum energies is taken, and are not chosen by random.
This causes heavier carving on the left or top side of relatively
symmetric images.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

V. CONCLUSION

The implementation of a greedy seam-carving algorithm
demonstrated in this paper is quite variative in terms of the
quality of resizing it does on an image. It really shines in cases
where objects and features are seperated in front of a clear
background, but struggles when the edge separation is unclear,
whether an object belongs in the foreground or is in one with
the background. This is of course a limitation caused by the
Sobel filter, since it really only can go so far in detecting edges,
and is easily confused by more obscure images.

Other than the quality of the resulting images, this
implementation is heavily bottlenecked by several factors,
hence why computing time is not heavily discussed in this
paper. The implementation I made was created using Python, a
relatively slow language. Adding to that, the algorithm for
seam removal is abyssmal in terms of speed, and is a whole
magnitude slower than generating the seam itself, as mentioned
in the implementation section.

Putting aside the poor qualities of this specific
implementation, I believe the attempt at a greedy seam-carving
algorithm itself was relatively successful. It achieved
surprisingly smart results using a very straightforwared
algorithm, that has the potential to be implemented even better.
Improvements can be made in several areas, such as the energy
function used, the heuristic determining of the starting pixel, a
randomized selection from multiple minimum pixels, and of
course a better seam removal algorithm.

ACKNOWLEDGMENT

I would like to thank Dr. Ir. Rinaldi, M.T. as my lecturer in
class IF2211 for Algorithmic Strategies, for giving me this
chance to write on this topic, and constantly pushing and
supporting us students. Thanks to his guidance, I have gained a
much better understanding on algorithms and the like, essential
to the writing of this paper. An appreciation also goes to his
writings that were very helpful in understanding these topics,
and his diligence in keeping up his website, full of resources
and references.

VIDEO LINK ON YOUTUBE

https://youtu.be/mklKpaamdrE

REFERENCES

[1] Avidan, Shai; Shamir, Ariel (July 2007). "Seam carving for content-
aware image resizing | ACM SIGGRAPH 2007 papers". Siggraph 2007:
10. doi:10.1145/1275808.1276390.

[2] Rubinstein, Michael; Gutierrez, Diego; Sorkine, Olga; Shamir, Ariel
(2010). "A Comparative Study of Image Retargeting" (PDF). ACM
Transactions on Graphics. 29 (5): 1–10. doi:10.1145/1882261.1866186.

[3] Munir, R., 2021. Algoritma Greedy (Bagian 1). [online]
Informatika.stei.itb.ac.id. Available at:
<http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Greedy-(2021)-Bag1.pdf> [Accessed 20 May 2022].

[4] VIOLA, P., AND JONES, M. 2001. Rapid object detection using a
boosted cascade of simple features. In Coference on Computer Vision
and Pattern Recognition (CVPR)

[5] ITTI, L., KOCH, C., AND NEIBUR, E. 1999. A model of saliencybased
visual attention for rapid scene analysis. PAMI 20, 11, 1254–1259.

[6] SETLUR, V., TAKAGI, S., RASKAR, R., GLEICHER, M., AND
GOOCH, B. 2005. Automatic Image Retargeting. In In the
Mobile and Ubiquitous Multimedia (MUM), ACM Press.

DECLARATION

I hereby declare this paper as my own writing, by my own
hands, and not adapted, translated, nor plagiarized from any
other existing works.

Bandung, 23rd May 2022

Zayd Muhammad Kawakibi Zuhri, 13520144

https://youtu.be/mklKpaamdrE
https://doi.org/10.1145%2F1275808.1276390
https://doi.org/10.1145%2F1275808.1276390
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F1275808.1276390

